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Large-volume sky surveys have accessed the Universe’s vast temporal and spatial expanse via a remarkable set of 
measurements. Interpretation of these cosmological observations requires large-scale numerical simulation and modeling. 
Addressing analysis workflow complexity is as important as running the underlying extreme-scale simulations. Here, the 
authors discuss how the Hardware/Hybrid Accelerated Cosmology Code framework addresses these challenges.

C
osmologists have looked deeply at the 
Universe and found it to be “dark.” Over 
the past three decades, detailed observa-
tions carried out from both the ground 

and from space have spanned the full range of the 
electromagnetic spectrum—from gamma rays to 
the radio sky—and have persuasively suggested an 
astonishing picture:

■■ approximately 70 percent of the Universe’s 
matter–energy content is made up of a myste-
rious “dark energy” component;

■■ this energy is potentially responsible for the 
Universe’s accelerated expansion; and

■■ 25 percent of the Universe’s matter exists in the 
form of an as-yet unidentified “dark matter” 
component, while only 0.4 percent of the re-
maining ordinary matter happens to be visible.

Understanding the mysterious dark sector’s 
physics is the foremost challenge in cosmology 
today. Major cosmological missions are both on-
going and planned with the goal of creating ever-
more detailed maps of how mass is distributed in 
the Universe. These maps hold the key to advanc-
ing our knowledge of the Universe’s make-up and 
evolution, enabling us to unlock its “dark” secrets.

Unlike a science based on the experimental 
method, cosmology lacks investigations under the 
researcher’s control, performed under strict isola-
tion, and allowing step-by-step progress towards 

solving a physical problem, however complex it 
may be. The task instead is to make a number of 
robust observations in which statistical and sys-
tematic errors can be bounded, and then to arrive 
at scientifically defensible inferences about the 
Universe. To do this, researchers create model uni-
verses allowing for different cosmological models 
and astrophysical effects, mimicking possible ob-
servational systematics and even implementing the 
“clean up” of observational data from unwanted 
foregrounds that might obscure the signals being 
searched for. The task’s complexity leads inexorably 
to the use of the world’s largest supercomputers.

This requires an end-to-end computational 
approach, starting from the fundamental theory 
(Einstein’s general relativity and modifications 
thereof, quantum mechanics), and then to simu-
lating the formation of large-scale structures in 
the Universe and creating synthetic maps for the 
target observation, and finally to modeling the 
instrument and effects that can bias observations, 
such as atmospheric turbulence. (A detailed discus-
sion of an end-to-end pipeline for the Large Syn-
optic Survey Telescope is available elsewhere.1) We 
must understand the observed system as a whole, 
and determine which physics will have important 
effects on what scales and where simple modeling 
will suffice, as compared to fully self-consistent 
simulations, and how uncertainties in modeling 
and simulations can bias the conclusions. This task 
is complicated further by the fact that we often 
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cannot directly observe what we want to study, 
but rather must draw conclusions from an indirect 
analysis, such as by using baryonic tracers (galaxies)  
of the large-scale structure of the Universe.

Here, we describe our current efforts to create 
synthetic galaxy maps from large-scale simulations 
for optical surveys, setting aside telescope model-
ing as a separate problem. To build these synthetic 
maps, we must simulate the evolution of the mass 
distribution in large cosmological volumes with ex-
quisite resolution. To demonstrate the challenge’s 
size, a quick summary of the relevant scales is as 
follows. Modern survey depths require covering 
simulation volumes of the order of tens of cubic 
gigaparsecs (Gpc; 1 pc = 3.26 light years); to follow 
bright galaxies, structures with a minimum mass 
of 1011 M¤ (M¤ = 1 solar mass) must be tracked 
and resolved by at least a 100 simulation particles. 
The force resolution (approximately a kiloparsec) 
must be small compared to the target object’s size. 
This immediately implies a dynamic range (a ratio 
of smallest resolved scale to box size) of a part in 
approximately 106 (that is, Gpc/kpc) everywhere in 
the entire simulation volume. In terms of the num-
ber of simulation particles required, the implied 
counts range from hundreds of billions to many 
trillions. This requires access to very large super-
computers and, in today’s landscape of diverse su-
percomputing architectures, a highly scalable and 
portable N-body code. To this end, we developed 
the Hardware/Hybrid Accelerated Cosmology 
Code (HACC), a high-performance code frame-
work targeted at current and future architectures. 

The Universe’s mass distribution is probed in-
directly, as most of the mass is dark and neither 
emits nor absorbs light. Because light’s presence or 
absence is what we observe, the connection between 
mass and light is of fundamental importance. To 
investigate this connection, we need both a major 

analysis suite and a seamless workflow to ingest 
the raw simulation output and produce large-scale 
maps of galaxies. We have created such an analysis 
environment, which combines in situ analysis tools 
with a suite of postprocessing steps (described later). 
As an example, Figure 1 summarizes the analysis 
path for the statistics of galaxy surveys. In this ar-
ticle, we focus on describing the different steps on 
the image’s left side—that is, how to use large-scale 
supercomputers to create detailed maps of our Uni-
verse as seen through optical telescopes. We also 
show some concrete examples of our efforts.

HACC Overview
HACC was initially designed for the Roadrunner 
supercomputer,2,3 the first system to break the pet-
aflops barrier. With its novel architecture of accel-
eration via the Cell processor, Roadrunner was by 
far the most forward-looking machine of its gen-
eration, providing a glimpse of the current frontier 
and some illumination of the path to the exascale.4

A modern high-performance code’s design 
must begin with an awareness that methods and 
algorithms should not be developed without an un-
derstanding of future programming paradigms and 
computing and storage architectures. The HACC 
computational strategy is based on a hybrid repre-
sentation of physical information on computational 
grids as well as “particles” that, depending on the 
context, can be viewed as tracers of mass, or micro-
fluid elements. This hybrid representation is flexible 
and maps well to machine architectures, as well as 
align with multiple programming paradigms. It 
also provides a broad choice of methods that can 
be optimized given architectural, power, and other 
constraints, letting researchers pick the best combi-
nation for their particular platform.

Technically speaking, HACC simulates cosmic 
structure formation by solving the gravitational 

Figure 1. Pipeline to extract cosmological information from galaxy surveys. The halo occupancy distribution (HOD) is a statistical method 
used to “paint” galaxies onto the dark matter distribution. The mass distribution from large simulations is populated with galaxies that 
live in dark matter clumps, called “halos.” The galaxy’s count and brightness is correlated with the halo mass. The results are compared 
to the galaxy distribution as measured by cosmological surveys.
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Vlasov-Poisson equation in an expanding Uni-
verse.5 The simulation starts from a smooth Gauss-
ian random field that evolves into a “cosmic web” 
comprised of sheets, filaments, and halos. Figure 2 
shows an image of cosmic structure formation over 
time. The Vlasov-Poisson equation is hopeless to 
solve as a partial differential equation because of its 
high dimensionality and the development of non-
linear structure; we thus employ N-body methods.

HACC uses a combination of grid and particle 
methods: the grid methods resolve the large- to 
medium- length (smooth) scales and the particle 
methods resolve the smaller scales. This split be-
tween the long- and short-range solver offers a 
convenient code organization: the long-range force 
computation—in this case, a fast Fourier transform-
based (FFT) solver—exists at the code’s higher lev-
el and is essentially architecture-independent. It is 
implemented in C/C++/MPI, and its performance 
and scaling is dominated by the FFT implementa-
tion. We have developed a new pencil-decomposed 
FFT and demonstrated scaling up to 1,572,864 
cores on Sequoia, a 96-rack IBM Blue Gene/Q 
(BG/Q) system.7 The particle-based short-range 
solver exists at a lower level of the computational 
hierarchy and is architecture-tunable. It combines 
MPI with a variety of local programming models 
(OpenCL, OpenMP, and CUDA) to readily adapt 
to different platforms.

To enhance its flexibility, the short-range 
solver uses a range of algorithms: direct particle–
particle interactions (that is, a P3M algorithm8) 
as on Roadrunner and Titan, or both tree and 
particle-particle methods as on the IBM BG/Q (a 
“PPTreePM” algorithm). The grid is responsible for 
four orders of magnitude of dynamic range, while 

the particle methods handle the critical two orders 
of magnitude at the shortest scales, in which parti-
cle clustering is maximal and the bulk of the time-
stepping computation takes place. An in-depth 
description of the HACC design and implementa-
tion, including the long-range solver, the different 
short-range solvers, the time stepper, and the code’s 
spatial decomposition and scaling properties, is 
available elsewhere.9

HACC’s multi-algorithmic structure attacks 
several weaknesses of conventional particle codes, 
including limited vectorization, indirection, com-
plex data structures, lack of threading, and short 
interaction lists. Currently, HACC is implement-
ed on conventional and Cell/GPU-accelerated 
clusters2,3,9 on the IBM BG architecture,7 and is 
running on prototype Intel Xeon Phi hardware. 
HACC is the first—and currently, the only—
large-scale cosmology code suite worldwide that 
can run at scale on all available supercomputer 
architectures. HACC achieved outstanding per-
formance on both Sequoia and Titan, reaching al-
most 14 pflops (69.2 percent of peak) on Sequoia, a 
kernel peak of 20.54 pflops on 77 percent of Titan 
(the full machine was not available for these scal-
ing runs), and 7.9 pflops of sustained performance 
on 77 percent of Titan for the full code. HACC’s 
outstanding performance and portability has let 
us carry out some of the challenging simulations 
needed to advance our understanding of the dark 
Universe.

Analytics Requirements and Tools
Analyzing large cosmological simulation datasets is 
as demanding as carrying out the simulations them-
selves. In fact, some of the computational modeling 

Figure 2. Time evolution of structure formation in a dense region. The zoomed-in frames depict the structure at 
different redshifts or times, starting 1.4 gigayears (Gyears)  after the Big Bang. The images were generated using the 
vl3 parallel volume rendering system.6
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applied to the outputs in postprocessing is even 
more complex than the N-body simulation itself 
with respect to the physical processes involved. To 
put the analysis task’s challenge in context, a single 
time snapshot from one of the simulations we de-
scribe later encompasses 40 Tbytes of raw data, and 
we must analyze on the order of 100 snapshots. This 
amount of data clearly demands a carefully con-
sidered analysis strategy that combines in situ and 
postprocessing tools. Another challenge is posed 
by the fact that the raw data from the simulation is 
very science-rich. A simulation yields not just opti-
cal catalogs (which we describe later), but also field 
maps, such as the cosmic microwave background 
temperature, or X-ray flux. It is thus important to 
store enough of the already-processed data to ensure 
that new science projects can be carried out later.

To design an efficient workflow to tackle these 
challenges, and to decide which analysis tools must 
be run in situ and therefore on the HPC system 
itself—which means they should scale as well as 
the main code, a difficult task in and of itself—it 
is useful to divide the data into three more or less-
distinct levels:

■■ Level I—the raw simulation output, which in-
cludes particles, densities, and so on.

■■ Level II—the “science” level, which contains 
output rendered as a description useful for fur-
ther theoretical analysis, including halo and 
subhalo information, merger trees, and line-of-
sight skewers.

■■ Level III—the “galaxy catalog” level, where 
the data are further reduced such that they can 
be interacted with in real time. 

Very roughly speaking, at each higher level, the 
data size reduces from the previous level by two or 
three orders of magnitude.

The data layer plays a crucial role for science 
applications. Because of the imbalances in the 
I/O bandwidth relative to peak performance for 
the computation and the extreme stressing of file 
systems, dumping raw data into a storage system 
for post-analysis is a poor strategy for a problem in 
which intensive analysis of very large datasets is es-
sential. Therefore, we carry out as much of the raw 
Level I data analysis as possible on the HPC sys-
tem itself, and also reduce as much Level I data to 
Level II as we can. The Level II datasets can then 
be loaded into an analysis cluster and further ana-
lyzed. Figure 3 shows a schematic of the different 
data levels and analysis hierarchy.

Level I analysis requires algorithms for tasks 
such as halo-finding, determining correlation func-
tions and a host of other statistical measures, build-
ing halo merger trees, and carrying out automated 
data subsampling. The overall data hierarchy must 
account for the needs of the analysis routines and 
the simulation code to maintain locality and avoid 
data movement. Level II data products can be used 
for science directly or used to produce Level III 
data products, such as mock survey catalogs that 
include galaxies with realistic colors, luminosi-
ties, and morphologies. The computational algo-
rithms we apply to address our science goals include 
density estimation, anomaly detection, tracking, 
high-dimensional model fitting, and nonparamet-
ric inversion. These techniques are computation and 
memory intensive and have been developed to work 
within the raw Level I and Level II data products.

We now discuss two concrete examples: the 
halo finder, which runs in situ with the simulations 
and reduces data from Level I to Level II; and the 
halo merger tree code, which acts on Level II data 
and enables the generation of Level III data.

Halo Finding
The halo concept plays a key role in cosmological 
simulations. Dark matter halos are the hosts of gal-
axies, and by mapping out galaxies we can draw 
conclusions about the dark matter distribution in 
the Universe. Halos mark over-densities in the dark 
matter distribution and can be identified through 
different algorithms. Most commonly, they are 
found either by locating density peaks directly and 
growing spheres out to a characteristic over-density 
or by using neighbor-finding algorithms. Here, we 

Figure 3. Data levels and analysis hierarchy of a cosmological simulation.
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will discuss one of the simplest—the friends-of-
friends (FOF) algorithm, which we used for all of 
the following results.

In FOF halo finding, for each particle, every 
particle within a certain distance (the linking length, 
which is usually between 0.15 to 0.2 of the mean 
interparticle spacing) is identified as a friend. The 
process is then continued for each friend particle. 
If the number of particles in such a conglomerate 
is above a certain threshold (usually approximately 
100 particles) the structure is called a halo. Its cen-
ter is found by finding the particles with the most 
friends (maximum local density); by determining 
the halo’s potential minimum; or by finding the av-
erage position from all halo particles (the center of 
mass). Naively, the FOF algorithm requires N2 op-
erations, but the algorithm is straightforwardly sped 
up to NlogN via a tree implementation. Our FOF 
finder also takes full advantage of the main code’s 
existing overloaded data structure to enable paral-
lel halo finding. Halos can be identified indepen-
dently on each rank; halos on the edge of a rank are 
not missed because particle information is available 
from the neighboring ranks. A final reconciliation 
step ensures that halos are not counted more than 
once. Details of the algorithm’s implementation 
and scaling properties are available elsewhere.10

As mentioned earlier, the FOF finder reduces 
the raw Level I simulation data to Level II data. 
The halo catalog itself, which contains informa-
tion about halo properties such as position and 

velocities, is negligible in size compared to the raw 
data. In addition to the halo catalog, we store the 
tags of all particles in halos and halo tags, which we 
need to construct halo merger trees. (Depending 
on the threshold of what defines a halo, the num-
ber of particles in halos is approximately 50 percent 
of all particles; a halo tag identifies each particle’s 
halo residency). Finally, we store full particle in-
formation (positions and velocities) for a subset 
of particles in halos (usually 1 percent) to enable 
placements of galaxies at those positions later on, 
and all particles in halos above a large mass cut-off.

This set of data (halo information and reduced 
information about particles in halos) defines the set 
of Level II data connected to the halos and reduces 
the data volume by a factor of approximately 10. 
Most of the data is stored in the particle tags of 
particles that are in halos—once the halo merger 
trees are built, this information can be discarded 
and the data reduction then reaches more than a 
factor of 100, as stated earlier. Halo finding is car-
ried out for roughly 20 percent of all global time 
steps (no halos exist very early in the simulation). 
Compared to the time stepper itself, the relative 
cost of the halo finder decreases over time, but al-
ways consumes roughly the same amount of time 
as a single time step. Because of the data size and 
computation time consumed, it is infeasible to 
offload this step to a smaller analysis cluster.

Merger Tree Construction
The FOF algorithm identifies halos from individual 
snapshots based on the spatial relationship between 
particles at a fixed point in time. To determine halo 
temporal evolution, we evaluate the FOF output 
from the complete sequence of snapshots. Our al-
gorithm compares halos from adjacent snapshots 
and constructs a graph for representing evolution-
ary events. The graph, called a merger tree, represents 
each halo by a vertex (see Figure 4) and similar halos 
in adjacent snapshots with an edge. We define a sim-
ilarity measure as the fraction of shared particles—
that is, the particle intersection of two halos—to 
total particles from the earlier of the two halos.

To construct the merger trees between subse-
quently taken snapshots, it is sufficient to compare 
the particle membership functions obtained by 
the FOF finder. However, computing the pairwise 
similarity matrix for the halos of all the adjacent 
snapshots requires some efficiency. To determine 
multiple-set intersection cardinality, we imple-
ment a technique that is linear with respect to the 
number of particles after an initial particle sort is 

Figure 4. Merger tree for the formation of an individual halo. Each vertex 
in the tree shows a dark matter halo at a certain time step (time advances 
from left to right, vertices on each vertical line are halos that exist at the 
same time). Light colors depict lower mass halos; darker blue colors depict 
more massive halos. Halos grow over time through two main mechanisms: 
incremental mass accretion, and the merging of halos; a merger with similar 
masses is called a “major merger.” The merger tree shown here is relatively 
small. Trees with up to 10,000 nodes can easily exist in the simulations.
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performed. We utilize a type of sparse matrix rep-
resentation for the similarity matrix to reduce the 
otherwise large memory requirement. The memory 
reduction is significant due to the large amount of 
sparsity inherent in the problem; in our experience, 
the computational overhead incurred is marginal.

As mentioned, this approach relies on the result 
of the FOF algorithm for calculating the halo mem-
bership function. Because the clustering algorithm re-
quires halos to have a minimum number of particles, 
the hard threshold can cause some misidentification 
of events when halos are near the minimum cutoff 
value. To reduce these misidentifications, we maintain 
a windowed history of missing halos. The missing 
halos’ particles are stored for comparison with later 
snapshots to determine if they re-emerge, and, if so, 
to be treated as coming from some pre-existing halo.

The Simulated and the Real Universe
We now describe some results from the analysis of re-
cent simulations carried out on Mira at the Argonne 
Leadership Computing Facility and on Titan at the 
Oak Ridge Leadership Computing Facility. As men-
tioned in our introduction, one important task in the 
analysis is to transform the mass distribution we ob-
tain from the N-body simulations into actual galaxy 
catalogs. Simulating galaxies from first principles in 
a cosmological volume is still far from possible—the 
dynamical range is vast and the physics of galaxy for-
mation is inadequately understood. Instead, galaxies 
can be painted onto the dark matter distributions, 
using models of different levels of sophistication. The 
main assumption here is that “light traces mass”—
that is, the galaxies trace the density of the mass 
distribution, which is predominantly dark. This as-
sumption is true only as an approximation; the aim is 
to develop more complex prescriptions to “light up” 
the dark matter distribution with galaxies.

A simple and powerful approach to this prob-
lem uses the Halo Occupation Distribution (HOD) 
model.10 In this approach, “central” and “satellite” 
galaxies of a certain type are assigned to a dark 
matter halo depending on the halo’s mass. The 
central galaxy lives at the center of the halo and is 
the brightest galaxy. If the halo is heavy enough to 
host more galaxies, satellite galaxies are assigned 
and placed within the halo. The HOD model is 
described by approximately five parameters that are 
tuned to match one observable, such as the galaxy 
power spectrum. Once the model is fixed, other ob-
servables can be predicted from the galaxy catalog.

Recently, we built synthetic sky maps based 
on a large Mira simulation evolving 32 billion 

particles in a (2.1 Gpc)3 volume and investigated 
the galaxy power spectrum’s dependence on the 
five HOD modeling parameters.11 Figure 5 shows 
the best-fit HOD model on top of data from the 
Baryon Oscillation Spectroscopic Survey (BOSS); 
as the figure shows, the results from simulations 
match well with the observational data.

Although the HOD approach is simple, it 
has one major shortcoming: it completely ne-
glects a halo’s formation history, which will surely 
carry information about the galaxy population it 
hosts today. For example, if a halo formed very 
early and grew mainly through mass accretion, 
it will not have much star formation today. Or, 
if the halo underwent a violent merger with an-
other large halo, it will also have a distinct galaxy 
population. To take these effects into account, 
researchers have developed semi-analytic mod-
els (SAMs) that follow each halo’s evolution via 
halo merger trees and, along the way, solve a set 
of physics equations that approximately describe 
galaxy formation. SAMs deliver highly detailed 
descriptions of the galaxies that populate halos, 
including their colors, positions, and shapes, star 
formation history, and black hole content. The 
SAMs’ drawback is that they depend on numer-
ous parameters (two to three hundred) that must 
be tuned to observations.

Figure 6 shows an example of our full simu-
lation and analysis pipeline working to create a 
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synthetic galaxy map. The simulation, carried out 
on Titan, has a mass resolution of approximately 
109 M¤ and therefore can capture the smaller ha-
los that host bright galaxies reliably. As the simula-
tion was run, halos were identified on the fly, and 
the information about particles resident in halos 
was stored. From this information, merger trees 
were constructed to track each halo’s evolution in 
detail. Finally, a sophisticated semi-analytic model 
(Galacticus13) was run on the merger trees to gen-
erate a full synthetic galaxy sky.

Our last example shows results from the larg-
est high-resolution simulation ever attempted: the 
Outer Rim simulation. This simulation is currently 
running on Mira and evolves 1.1 trillion particles 
in a (4,225 megaparsecs [Mpc])3 volume. As for 

the Titan run, each particle has a mass of approxi-
mately 109 M¤, but the volume covered is many 
times larger. The force resolution in the simulation 
is approximately 4.1 kpc, achieved via a 10,2403 
particle mesh (PM) on the large scales in combina-
tion with the tree solver on small scales. To dem-
onstrate the simulation’s scale, we show a slice of 
the full simulation box in Figure 7 as well as the 
output from one of the 262,144 ranks the simula-
tion is run on.

A lready, new science results have been extract-
ed from the simulation (even though it has 

not quite yet reached the present epoch); Figure 8 
shows an example of the exciting science results 
that are possible. In this case, a halo at a certain 
time was extracted, a tessellation-based estimator 
was used to create its 2D projected density, and a 
ray-tracing code generated a strong gravitational 
lensing image from a simulated source (Figure 8 
shows the workflow). Strong lensing refers to the se-
vere distortion of galaxy images and the generation 
of multiple images due to the presence of a mas-
sive intervening object between the source galax-
ies and the observer. In our case, the halo is the 
massive object (in the center of Figure 8c), galaxies 
are placed behind this lens, and the visible arcs are 
the distorted images as given by a fast ray-tracing 
algorithm.

The resulting images can be compared to im-
ages, such as those taken by the Hubble Space 
Telescope, yielding new clues about the dark Uni-
verse, such as the dark matter properties that make 
up the lensing halo. 

Level I data, particles Level II data, halo particles Level III data, merger trees Level III data, galaxies

HACC simulation
(a) (b) (c) (d)

Insitu halo finder Merger tree code Galacticus

4,225 Mpc

66 Mpc

Figure 6. From raw simulation to galaxy catalog. (a) The zoom-in to a full particle distribution from the N-body simulation (Level I data). 
(b) Dark matter halos identified with the friends-of-friends (FOF) halo finder (Level II data). (c) A merger tree (Level III data). (d) The 
galaxies embedded in the halos as determined by Galacticus (Level III data). The images were generated using the vl3 parallel volume 
rendering system.2

Figure 7. Dynamic range of the Outer Rim simulation. (a) The full simulation 
volume of (4,225 Mpc)3. (b) Output from just one of the 524,288 cores.

CISE-16-05-Heitmann.indd   20 9/16/14   2:50 PM



www.computer.org/cise			   	�  21

Acknowledgments
The authors were supported by the US Department 
of Energy, Office of Science, under contract DE-
AC02-06CH11357. This research used resources 
of the Argonne Leadership Computing Facility 
(ALCF), which is supported by DOE/SC under con-
tract DE-AC02-06CH11357 and resources of the 
Oak Ridge Leadership Computing Facility (OLCF), 
which is supported by DOE/SC under contract 
DE-AC05-00OR22725.

References
1.	 A. Abate et al., Large Synoptic Survey Telescope: Dark 

Energy Science Collaboration, white paper, 2012.
2.	 S. Habib et al., “Hybrid Petacomputing Meets 

Cosmology: The Roadrunner Universe Project,” J. 
Physics: Conf. Series, vol. 180, no. 1, 2009, article no. 
012019.

3.	 A. Pope et al., “The Accelerated Universe,” Comput-
ing in Science & Eng., vol. 12, no. 4, 2010, pp. 17–25.

4.	 S. Swaminarayan, “Roadrunner: The Dawn of 
Accelerated Computing,” Contemporary High 
Performance Computing , CRC Press, 2013,  
pp. 189–224.

5.	 K.S. Dolag, A.M. Bykov, and A. Diaferio, “Non-
Thermal Processes in Cosmological Simulations,” 
Space Science Review, vol. 134, nos. 1–4, 2008,  
pp. 311–335.

6.	 M. Hereld et al., “Exploring Large Data over Wide 
Area Networks,” Proc. 2011 IEEE Symp. Large Data 
Analysis and Visualization, 2011, pp. 133–134.

7.	 S. Habib et al., “The Universe at Extreme Scale: 
Multi-Petaflop Sky Simulation on the BG/Q,” Proc. 
Int’ l Conf. High Performance Computing, Network-
ing, Storage and Analysis, 2012; http://arxiv.org/
pdf/1211.4864.pdf.

8.	 R.W. Hockney and J.W. Eastwood, Computer Simu-
lation Using Particles, Adam Hilger, 1988.

9.	 S. Habib et al, “HACC: Extreme Scaling and Per-
formance across Diverse Architectures,” Proc. Int’ l 
Conf. High Performance Computing, Networking, 
Storage and Analysis, 2013, article no. 6.

10.	 J. Woodring et al., “Analyzing and Visualizing 
Cosmological Simulations with ParaView,” The 
Astrophysical J. Supplement, vol. 195, no. 1, 2011; 
doi:10.1088/0067-0049/195/1/11.

11.	 J. Kwan et al., “Cosmic Emulation: Fast Predictions 
for the Galaxy Power Spectrum,” preprint, Astro-
physical J., 2013.

12.	L. Anderson et al., “The Clustering of Galaxies in 
the SDSS-III Baryon Oscillation Spectroscopic 
Survey: Baryon Acoustic Oscillations in the Data 
Release 10 and 11 Galaxy Samples,” Monthly No-
tices Royal Astronomical Soc., vol. 427, no. 4, 2012,  
pp. 3435–3467.

13.	 A. Benson, “Galacticus: A Semi-analytic Model of 
Galaxy Formation,” New Astronomy, vol. 17, no. 2, 
2012, pp. 175–197.

Katrin Heitmann is a member of the scientific staff in the 
High-Energy Physics and Mathematics and Computa-
tional Science Divisions at Argonne National Laboratory 

Level II data, halo particles

(a) (b) (c)

4
3
2
1
0

–1
–2
–3
–4
–5
–6 –4 –2 0 2 4 –6

–4
–2

0
2

4

Level II data, projected density Level III data, simulated image

Figure 8. From the raw simulation to a simulated strong lensing image. (a) The tessellation approach for density estimation applied to the 
particle data extracted with the halo finder. The 2D density field is obtained by a weighted sum of 3D density estimates. The box size is 
on the scale of an individual halo (in units of Mpc) and the grid resolution is independent of simulation parameters. Points are sampled 
at discrete intervals on lines normal to the 2D grid cells (shown in blue). Sample points within the tetrahedra intersected by the line 
are identified and interpolated. (b) A 2D density field is created as seen by an observer—if dark matter were directly visible. (c) Finally, 
galaxies are placed behind the halo and lensed images of these galaxies are created through a ray-tracing algorithm.
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